Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting
نویسندگان
چکیده
Wind energy is increasingly considered one of the most promising sustainable energy sources for its characteristics of cleanliness without any pollution. Wind speed forecasting is a vital problem in wind power industry. However, individual forecasting models ignore the significance of data preprocessing and model parameter optimization, which may lead to poor forecasting performance. In this paper, a novel hybrid rk, Bts-ABBP (back propagation based on adaptive strategy with parameters k and Bt) model was developed based on an adaptive boosting (AB) strategy that integrates several BP (back propagation) neural networks for wind speed forecasting. The fast ensemble empirical mode decomposition technique is initially conducted in the preprocessing stage to reconstruct data, while a novel modified FPA (flower pollination algorithm) incorporating a conjugate gradient (CG) is proposed for searching for the optimal parameters of the rk, Bts-ABBP mode. The case studies of five wind power stations in Penglai, China are used as illustrative examples for evaluating the effectiveness and efficiency of the developed hybrid forecast strategy. Numerical results show that the developed hybrid model is simple and can satisfactorily approximate the actual wind speed series. Therefore, the developed hybrid model can be an effective tool in mining and analysis for wind power plants.
منابع مشابه
Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملA New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA
Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...
متن کاملHybrid Wind Speed Prediction Based on a Self-Adaptive ARIMAX Model with an Exogenous WRF Simulation
Wind speed forecasting is difficult not only because of the influence of atmospheric dynamics but also for the impossibility of providing an accurate prediction with traditional statistical forecasting models that work by discovering an inner relationship within historical records. This paper develops a self-adaptive (SA) auto-regressive integrated moving average with exogenous variables (ARIMA...
متن کاملProbabilistic Optimal Operation of a Smart Grid Including Wind Power Generator Units
This paper presents a probabilistic optimal power flow (POPF) algorithm considering different uncertainties in a smart grid. Different uncertainties such as variation of nodal load, change in system configuration, measuring errors, forecasting errors, and etc. can be considered in the proposed algorithm. By increasing the penetration of the renewable energies in power systems, it is more essent...
متن کاملPower and Velocity Control of Wind Turbines by Adaptive Fuzzy Controller during Full Load Operation
Research on wind turbine technologies have focused primarily on power cost reduction. Generally, this aim has been achieved by increasing power output while maintaining the structural load at a reasonable level. However, disturbances, such as wind speed, affect the performance of wind turbines, and as a result, the use of various types of controller becomes crucial.This paper deals with two ada...
متن کامل